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INTRODUCTION  
 

 Up till now a vector has meant a row or column vector, with 

several components.  But most of the theory applies to 

“abstract” vectors, mathematical objects that satisfy the 

Vector Space axioms. 

This allows us to use the concepts and techniques 

of linear algebra in situations where there are no 

components.  The most notable example is the cases of 

spaces of functions.  For example we can add two 

functions by adding corresponding values.  And we can 

multiply functions by a scalar in the obvious way.  What 

is more, if the functions map a field to itself the axioms of 

a vector space will hold, and hence all the theorems that 

can be built up from these axioms. 

For example, if f(x) = sin2x and g(x) = cos2x, as 

functions from ℝ to ℝ,  then the well known identity sin2 

+ cos2x = 1 can be considered as an equation that states 

that the sum of these two vectors is the constant function 

h(x) = 1. 

 In an abstract vector space the functions that take 

sums to sums and scalar products to scalar product are of 

great importance.  They are called linear transformations 

and we shall study their properties as well as showing that 

they are intimately related to matrices. 

 Inner product spaces are vector spaces with some 

extra structure that enable us to define lengths and 

orthogonality.  These concepts are useful not just in 

geometric spaces, where orthogonality is equivalent to 
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perpendicularity (provided the vectors are non-zero) but 

orthogonal sets of functions are extremely useful in an 

area of mathematics called Fourier Theory.  Finally, we 

revist diagonalisation using the power of abstract vector 

spaces. 
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